Monday, 2 October 2017

Moving Average Process Stationär


Man betrachte den unendlichen Ordnungs-MA-Prozess, der durch ytepsilonta (epsilon epsilon) definiert ist, wobei a eine Konstante ist und die epsilonts i. i.d. N (0, v) Zufallsvariable. Was ist der beste Weg, um zu zeigen, dass yt nichtstationär ist Ich weiß, dass ich auf die charakteristischen Wurzeln der Merkmale Polynom und dann beurteilen müssen, ob sie außerhalb des Einheitskreises sind, aber was ist der beste Weg, um dieses Problem zu nähern Sollte ich versuchen, die unendliche Reihenfolge MA Prozess als eine endliche Ordnung AR Prozess oder ist es einfacher, die MA-Prozess gefragt am 19. Oktober um 21: 11Was sind stationäre autoregressive (AR), gleitenden Durchschnitt (MA) und stationäre gemischt (ARMA ) Prozesse Stationärer autoregressiver (AR) Prozess Die stationären autoregressiven (AR) Prozesse haben theoretische Autokorrelationsfunktionen (ACFs), die auf Null abfallen, anstatt auf Null abzuschneiden. Die Autokorrelationskoeffizienten können sich häufig im Zeichen abwechseln oder ein wellenförmiges Muster zeigen, aber in allen Fällen schwenken sie gegen Null. Im Gegensatz dazu haben AR-Prozesse mit der Ordnung p theoretische partielle Autokorrelationsfunktionen (PACF), die nach der Verzögerung p auf Null abschneiden. (Die Verzögerungslänge des endgültigen PACF-Spikes entspricht der AR-Ordnung des Prozesses, p.) Gleitender Durchschnitt (MA) - Prozeß Die theoretischen ACFs von MA - Des Prozesses. Allerdings zerfallen ihre theoretischen PACFs gegen Null. Stationäre gemischte (ARMA) Verfahren Stationäre gemischte (ARMA) Prozesse zeigen eine Mischung aus AR - und MA-Charakteristiken. Sowohl das theoretische ACF als auch das PACF schwanken in Richtung Null. Copyright 2016 Minitab Inc. Alle Rechte vorbehalten.4.2 Lineare stationäre Modelle für Zeitreihen, in denen die Zufallsvariable die Innovation genannt wird, weil sie den Teil der beobachteten Variablen darstellt, der aufgrund der vergangenen Werte nicht vorhersehbar ist. Das allgemeine Modell (4.4) geht davon aus, dass das Ausgangssignal eines linearen Filters ist, der die bisherigen Innovationen transformiert, dh einen linearen Prozess darstellt. Diese Linearitätsannahme basiert auf dem Wolds-Zerlegungstheorem (Wold 1938), das besagt, dass jeder diskrete stationäre Kovarianzprozess als Summe zweier nicht korrelierter Prozesse ausgedrückt werden kann, wobei er rein deterministisch ist und ein rein indeterministischer Prozess ist, der als linear geschrieben werden kann Summe des Innovationsprozesses: wo ist eine Folge von seriell unkorrelierten Zufallsvariablen mit null mittlerer und gemeinsamer Varianz. Voraussetzung für die Stationarität. Die Formulierung (4.4) ist eine endliche Reparametrisierung der unendlichen Darstellung (4.5) - (4.6) mit der Konstanten. Es wird üblicherweise in Form des durch den definierten Verzögerungsoperators geschrieben, der einen kürzeren Ausdruck ergibt: wobei die Verzögerungsoperatorpolynome und das Polynom bzw. das Polynom aufgerufen werden. Um eine Parameterredundanz zu vermeiden, gehen wir davon aus, dass es keine gemeinsamen Faktoren zwischen den Komponenten und den Komponenten gibt. Als nächstes werden wir die Handlung einiger Zeitreihen studieren, die von stationären Modellen mit dem Ziel entwickelt werden, die Hauptmuster ihrer zeitlichen Entwicklung zu bestimmen. Abbildung 4.2 enthält zwei Serien, die mit Hilfe des Genarma-Quantlets aus den folgenden stationären Prozessen generiert werden: Abbildung 4.2: Zeitreihen, die von Modellen erzeugt werden Erwartungsgemäß bewegen sich beide Zeitreihen um ein konstantes Niveau ohne Änderungen der Varianz aufgrund der stationären Eigenschaft. Darüber hinaus ist dieses Niveau nahe dem theoretischen Mittel des Prozesses, und der Abstand jedes Punktes zu diesem Wert ist sehr selten außerhalb der Grenzen. Darüber hinaus zeigt die Entwicklung der Serie lokale Abweichungen vom Mittelwert des Prozesses, der als das mittlere Reversionsverhalten, das die stationären Zeitreihen charakterisiert, bekannt ist. Wir wollen die Eigenschaften der verschiedenen Prozesse genauer untersuchen, insbesondere die Autokovarianzfunktion, die die dynamischen Eigenschaften eines stochastischen stationären Prozesses erfasst. Diese Funktion hängt von den Maßeinheiten ab, so dass das übliche Maß für den Grad der Linearität zwischen den Variablen der Korrelationskoeffizient ist. Im Fall stationärer Prozesse ist der Autokorrelationskoeffizient bei Verzögerung, bezeichnet mit, als die Korrelation zwischen und definiert. Somit ist die Autokorrelationsfunktion (ACF) die Autokovarianzfunktion, die durch die Varianz standardisiert ist. Die Eigenschaften des ACF sind: Angesichts der Symmetrieeigenschaft (4.10) wird der ACF in der Regel durch ein Balkendiagramm an den nichtnegativen Verzögerungen dargestellt, das als einfaches Korrelogramm bezeichnet wird. Ein weiteres nützliches Werkzeug zur Beschreibung der Dynamik eines stationären Prozesses ist die partielle Autokorrelationsfunktion (PACF). Der partielle Autokorrelationskoeffizient bei Verzögerung misst die lineare Zuordnung zwischen den Werten der Zwischenwerte. Daher ist es nur der Koeffizient im linearen Regressionsmodell: Die Eigenschaften der PACF sind äquivalent zu denen des ACF (4.8) - (4.10) und es ist leicht zu beweisen, dass (Box und Jenkins 1976). Wie die ACF hängt die partielle Autokorrelationsfunktion nicht von den Maßeinheiten ab und wird durch ein Balkendiagramm an den nichtnegativen Verzögerungen dargestellt, das als partielles Korrelogramm bezeichnet wird. Die dynamischen Eigenschaften jedes stationären Modells bestimmen eine bestimmte Form der Korrelogramme. Darüber hinaus kann gezeigt werden, dass für jeden stationären Prozess, beide Funktionen, ACF und PACF, nähern sich Null, wie die Verzögerung tendiert zu unendlich. Die Modelle sind nicht immer stationäre Prozesse, daher ist es notwendig, zunächst die Bedingungen für die Stationarität zu bestimmen. Es gibt Unterklassen von Modellen, die besondere Eigenschaften haben, so dass wir sie getrennt studieren. Also, wenn und, es ist ein weißes Rauschen Prozess. Wenn es ein reiner gleitender Durchschnitt der Ordnung ist. , Und wenn es ein reiner autoregressiver Prozess der Ordnung ist. . 4.2.1 Weißes Rauschen Das einfachste Modell ist ein weißes Rauschen, bei dem es sich um eine Folge von unkorrelierten Nullmittelwerten mit konstanter Varianz handelt. Es ist mit bezeichnet. Dieser Prozeß ist stationär, wenn seine Varianz endlich ist, da die Bedingung (4.1) - (4.3) verifiziert wird. Zudem ist die Autokovarianzfunktion nicht korreliert: Abbildung 4.7 zeigt zwei simulierte Zeitreihen, die aus Prozessen mit Nullmittelwerten und Parametern und -0.7 erzeugt wurden. Der autoregressive Parameter misst die Persistenz vergangener Ereignisse in die aktuellen Werte. Wenn zum Beispiel ein positiver (oder negativer) Schock positiv (oder negativ) für einen längeren Zeitraum wirkt, der um so größer ist, je größer der Wert von ist. Wenn sich die Serie durch den Wechsel in Richtung der Wirkung, dh einen Schock, der sich positiv auf das Moment auswirkt, mehr grob um den Mittelpunkt bewegt, hat dies negative Auswirkungen auf, positiv. Der Prozeß ist immer invertierbar und er ist stationär, wenn der Parameter des Modells in der Region liegt. Um den stationären Zustand zu beweisen, schreiben wir zuerst die in der gleitenden Durchschnittsform durch rekursive Substitution von in (4.14): Abbildung 4.8: Populations-Korrelogramme für Prozesse Das heißt, ist eine gewichtete Summe aus vergangenen Innovationen. Die Gewichte hängen vom Wert des Parameters ab: wann, (oder) der Einfluss einer gegebenen Innovation durch die Zeit zunimmt (oder abnimmt). Erwartungen an (4.15), um den Mittelwert des Prozesses zu berechnen, erhalten wir: Angenommen, das Ergebnis ist eine Summe unendlicher Glieder, die für alle Werte nur dann konvergiert, wenn in diesem Fall. Ein ähnliches Problem erscheint, wenn wir das zweite Moment berechnen. Der Beweis kann vereinfacht werden unter der Annahme, dass, das heißt,. Dann ist Varianz: Wiederum geht die Varianz in unendlich bis auf, in welchem ​​Fall. Es ist leicht zu überprüfen, dass sowohl der Mittelwert und die Varianz explodieren, wenn diese Bedingung nicht hält. Die Autokovarianzfunktion eines stationären Prozesses ist daher die Autokorrelationsfunktion für das stationäre Modell: Das heißt, das Korrelogramm zeigt einen exponentiellen Abfall mit positiven Werten immer, wenn positiv und bei negativ positiven Schwingungen if negativ ist (siehe Abbildung 4.8). Weiterhin nimmt die Abklinggeschwindigkeit ab, je größer der Wert ist, desto stärker ist die dynamische Korrelation im Prozess. Schließlich gibt es einen Cutoff in der partiellen Autokorrelationsfunktion bei der ersten Verzögerung. Abbildung 4.9: Populations-Korrelogramme für Prozesse Es kann gezeigt werden, dass der allgemeine Prozess (Box und Jenkins 1976): Ist nur stationär, wenn die Wurzeln der charakteristischen Gleichung des Polynoms außerhalb des Einheitskreises liegen. Der Mittelwert eines stationären Modells ist. Es ist immer invertierbar für alle Werte der Parameter. Its ACF geht auf null exponentiell, wenn die Wurzeln der realen oder mit Sinus-Cosinus-Welle Fluktuationen, wenn sie komplex sind. Its PACF hat einen Cutoff auf der Lag, das heißt, Korrelokolle für komplexere Modelle, wie z. B. die, sind in Abbildung 4.9 zu sehen. Sie sind den Mustern sehr ähnlich, wenn die Prozesse reale Wurzeln haben, nehmen aber eine sehr unterschiedliche Form ein, wenn die Wurzeln komplex sind (siehe das erste Grafikpaar der Abbildung 4.9). 4.2.4 Autoregressives Moving Average Modell Das allgemeine (endliche) autoregressive Moving Average Modell der Befehle, ist:

No comments:

Post a Comment