Friday, 24 November 2017

Moving Average Methode Zu Prognose Umsatz


Gleitender Durchschnitt Vorhersage Einleitung. Wie Sie vermutlich schauen, betrachten wir einige der primitivsten Ansätze zur Prognose. Aber hoffentlich sind diese zumindest eine lohnende Einführung in einige der Rechenprobleme im Zusammenhang mit der Umsetzung von Prognosen in Tabellenkalkulationen. In diesem Sinne werden wir von Anfang an beginnen und beginnen mit Moving Average Prognosen zu arbeiten. Gleitende durchschnittliche Prognosen. Jeder ist vertraut mit gleitenden durchschnittlichen Prognosen, unabhängig davon, ob sie glauben, sie sind. Alle Studenten tun sie die ganze Zeit. Denken Sie an Ihre Testergebnisse in einem Kurs, in dem Sie vier Tests während des Semesters haben werden. Angenommen, Sie haben eine 85 auf Ihrem ersten Test. Was würden Sie vorhersagen, für Ihre zweite Test-Score Was glauben Sie, Ihr Lehrer würde für Ihre nächste Test-Punkt vorhersagen Was denken Sie, Ihre Freunde könnten für Ihre nächste Test-Punkt vorherzusagen Was denken Sie, Ihre Eltern könnten für Ihre nächste Test-Score Unabhängig davon vorhersagen Alle die blabbing Sie tun könnten, um Ihre Freunde und Eltern, sie und Ihr Lehrer sind sehr wahrscheinlich zu erwarten, dass Sie etwas im Bereich der 85 erhalten Sie gerade bekommen. Nun, jetzt gehen wir davon aus, dass trotz Ihrer Selbst-Förderung an Ihre Freunde, Sie über-schätzen Sie sich und Figur, die Sie weniger für den zweiten Test lernen können und so erhalten Sie eine 73. Nun, was sind alle betroffenen und unbekümmerten gehen Erwarten Sie erhalten auf Ihrem dritten Test Es gibt zwei sehr wahrscheinlich Ansätze, damit sie eine Schätzung unabhängig davon entwickeln, ob sie sie mit Ihnen teilen. Sie können zu sich selbst sagen, dieser Kerl ist immer bläst Rauch über seine smarts. Hes gehend, ein anderes 73 zu erhalten, wenn hes glücklich. Vielleicht werden die Eltern versuchen, mehr unterstützend und sagen, quotWell, so weit youve bekommen eine 85 und eine 73, so vielleicht sollten Sie auf eine über (85 73) 2 79. Ich weiß nicht, vielleicht, wenn Sie weniger feiern Und werent wedelte das Wiesel ganz über dem Platz und wenn Sie anfingen, viel mehr zu studieren, konnten Sie einen höheren score. quot erhalten. Beide dieser Schätzungen sind wirklich gleitende durchschnittliche Prognosen. Der erste verwendet nur Ihre jüngste Punktzahl, um Ihre zukünftige Leistung zu prognostizieren. Dies wird als gleitende Durchschnittsprognose mit einer Datenperiode bezeichnet. Die zweite ist auch eine gleitende durchschnittliche Prognose, aber mit zwei Perioden von Daten. Nehmen wir an, dass alle diese Leute, die auf deinem großen Verstand zerschmettern, Art von dich angepisst haben und du entscheidest, auf dem dritten Test aus deinen eigenen Gründen gut zu tun und eine höhere Kerbe vor deinen quotalliesquot zu setzen. Sie nehmen den Test und Ihre Gäste ist eigentlich ein 89 Jeder, einschließlich selbst, ist beeindruckt. So jetzt haben Sie die abschließende Prüfung des Semesters herauf und wie üblich spüren Sie die Notwendigkeit, alle in die Vorhersagen zu machen, wie youll auf dem letzten Test tun. Nun, hoffentlich sehen Sie das Muster. Nun, hoffentlich können Sie das Muster sehen. Was glauben Sie, ist die genaueste Pfeife, während wir arbeiten. Nun kehren wir zu unserer neuen Reinigungsfirma zurück, die von Ihrer entfremdeten Halbschwester namens Whistle While We Work begonnen wurde. Sie haben einige vergangene Verkaufsdaten, die durch den folgenden Abschnitt aus einer Kalkulationstabelle dargestellt werden. Zuerst präsentieren wir die Daten für eine dreidimensionale gleitende Durchschnittsprognose. Der Eintrag für Zelle C6 sollte jetzt sein Sie können diese Zellformel auf die anderen Zellen C7 bis C11 kopieren. Beachten Sie, wie der Durchschnitt bewegt sich über die jüngsten historischen Daten, sondern verwendet genau die drei letzten Perioden zur Verfügung für jede Vorhersage. Sie sollten auch bemerken, dass wir nicht wirklich brauchen, um die Vorhersagen für die vergangenen Perioden zu machen, um unsere jüngste Vorhersage zu entwickeln. Dies ist definitiv anders als das exponentielle Glättungsmodell. Ive eingeschlossen das quotpast predictionsquot, weil wir sie auf der folgenden Webseite verwenden, um Vorhersagegültigkeit zu messen. Nun möchte ich die analogen Ergebnisse für eine zwei-Periode gleitenden Durchschnitt Prognose zu präsentieren. Der Eintrag für Zelle C5 sollte jetzt sein Sie können diese Zellformel auf die anderen Zellen C6 bis C11 kopieren. Beachten Sie, wie jetzt nur die beiden letzten Stücke der historischen Daten für jede Vorhersage verwendet werden. Wieder habe ich die quotpast Vorhersagequot für illustrative Zwecke und für die spätere Verwendung in der Prognose Validierung enthalten. Einige andere Dinge, die wichtig zu beachten sind. Für eine m-Periode gleitende Durchschnittsprognose werden nur die m neuesten Datenwerte verwendet, um die Vorhersage durchzuführen. Nichts anderes ist notwendig. Für eine m-Periode gleitende durchschnittliche Prognose, wenn Sie Quotpast Vorhersagequot, beachten Sie, dass die erste Vorhersage tritt im Zeitraum m 1 auf. Diese beiden Fragen werden sehr wichtig sein, wenn wir unseren Code entwickeln. Entwicklung der Moving Average Funktion. Nun müssen wir den Code für die gleitende Durchschnittsprognose entwickeln, die flexibler genutzt werden kann. Der Code folgt. Beachten Sie, dass die Eingaben für die Anzahl der Perioden sind, die Sie in der Prognose und dem Array der historischen Werte verwenden möchten. Sie können es in beliebiger Arbeitsmappe speichern. Funktion MovingAverage (Historical, NumberOfPeriods) als einzelne Deklarations - und Initialisierungsvariablen Dim Item als Variant Dim Zähler als Integer Dim Summe als Single Dim HistoricalSize als Integer Initialisierung von Variablen Zähler 1 Akkumulation 0 Festlegung der Größe des Historical Arrays HistoricalSize Historical. Count For Counter 1 bis NumberOfPeriods Summieren der entsprechenden Anzahl der zuletzt beobachteten Werte Accumulation Accumulation Historical (HistoricalSize - NumberOfPeriods Counter) MovingAverage Accumulation NumberOfPeriods Der Code wird in der Klasse erklärt. Sie möchten die Funktion in der Tabellenkalkulation positionieren, so dass das Ergebnis der Berechnung dort erscheint, wo es wie folgt aussehen sollte: Der einfachste Ansatz wäre, den Durchschnitt von Januar bis März zu nutzen und diese zu verwenden, um den Umsatz von April8217 zu schätzen: (129 134 122) 3 128.333 Daher, basierend auf den Umsatz von Januar bis März, Sie prognostizieren, dass der Umsatz im April 128,333 werden. Sobald April8217s tatsächliche Verkäufe hereinkommen, würden Sie dann die Prognose für Mai berechnen, dieses mal using Februar bis April. Sie müssen mit der Anzahl der Perioden übereinstimmen, die Sie für die gleitende durchschnittliche Prognose verwenden. Die Anzahl der Perioden, die Sie in Ihren gleitenden durchschnittlichen Prognosen verwenden, sind beliebig, Sie können nur zwei Perioden verwenden, oder fünf oder sechs Perioden, was auch immer Sie Ihre Prognosen generieren möchten. Der oben genannte Ansatz ist ein einfacher gleitender Durchschnitt. Manchmal können jüngere Monate8217 Verkäufe stärkere Einflussfaktoren des kommenden Monats8217s Verkäufe sein, also möchten Sie jene Annäherungsmonate mehr Gewicht in Ihrem Vorhersagemodell geben. Dies ist ein gewichteter gleitender Durchschnitt. Und genau wie die Anzahl der Perioden sind die Gewichte, die Sie zuweisen, rein willkürlich. Let8217s sagen, Sie wollten geben March8217s Umsatz 50 Gewicht, Februar8217s 30 Gewicht und Januar8217s 20. Dann wird Ihre Prognose für April 127.000 (122.50) (134.30) (129.20) 127 sein. Einschränkungen gleitender Durchschnittsmethoden Gleitende Mittelwerte werden als 8220smoothing8221 Prognosetechnik betrachtet. Weil Sie einen Durchschnitt im Laufe der Zeit nehmen, sind Sie die Erweichung (oder Glättung) der Auswirkungen von unregelmäßigen Ereignissen innerhalb der Daten. Folglich können die Auswirkungen von Saisonalität, Konjunkturzyklen und anderen zufälligen Ereignissen den Prognosefehler drastisch erhöhen. Werfen Sie einen Blick auf ein vollständiges year8217s Wert von Daten, und vergleichen Sie einen 3-Perioden gleitenden Durchschnitt und einen 5-Perioden gleitenden Durchschnitt: Beachten Sie, dass in diesem Fall, dass ich keine Prognosen erstellt, sondern zentriert die gleitenden Durchschnitte. Die ersten dreimonatigen gleitenden Durchschnitt ist für Februar, und es8217s der Durchschnitt von Januar, Februar und März. Ich habe auch ähnlich für die 5-Monats-Durchschnitt. Nun, werfen Sie einen Blick auf die folgende Tabelle: Was sehen Sie, ist nicht die dreimonatige gleitende durchschnittliche Reihe viel glatter als die tatsächlichen Verkaufsreihen Und wie über die Fünf-Monats-gleitenden Durchschnitt It8217s sogar glatter. Daher, je mehr Zeiträume Sie in Ihrem gleitenden Durchschnitt verwenden, desto glatter Ihre Zeitreihen. Daher kann für die Prognose ein einfacher gleitender Durchschnitt nicht die genaueste Methode sein. Gleitende Durchschnittsmethoden erweisen sich als sehr wertvoll, wenn Sie versuchen, die saisonalen, unregelmäßigen und zyklischen Komponenten einer Zeitreihe für fortgeschrittene Prognosemethoden, wie Regression und ARIMA, zu extrahieren und die Verwendung von gleitenden Mittelwerten bei der Zerlegung einer Zeitreihe wird später behandelt in der Serie. Bestimmen der Genauigkeit eines gleitenden Durchschnittsmodells Im Allgemeinen möchten Sie eine Prognosemethode, die den geringsten Fehler zwischen tatsächlichen und vorhergesagten Ergebnissen aufweist. Eine der häufigsten Maßnahmen der Prognosegenauigkeit ist die Mean Absolute Deviation (MAD). Bei dieser Vorgehensweise nehmen Sie für jede Periode in der Zeitreihe, für die Sie eine Prognose erstellt haben, den absoluten Wert der Differenz zwischen dem aktuellen und dem prognostizierten Wert (die Abweichung). Dann durchschnittst du diese absoluten Abweichungen und du erhältst ein Maß von MAD. MAD kann hilfreich bei der Entscheidung über die Anzahl der Perioden, die Sie durchschnittlich, und die Menge des Gewichts, die Sie auf jeder Periode. Im Allgemeinen wählen Sie die eine, die in der niedrigsten MAD resultiert. Hier ist ein Beispiel dafür, wie MAD berechnet wird: MAD ist einfach der Durchschnitt von 8, 1 und 3. Moving Averages: Recap Bei der Verwendung von Moving Averages für die Prognose, denken Sie daran: Moving Durchschnitte können einfach oder gewichtet werden Die Anzahl der Perioden, die Sie für Ihre verwenden Durchschnittlich und alle Gewichte, die Sie jedem zuweisen, sind streng beliebig Bewegungsdurchschnitte glatt machen unregelmäßige Muster in Zeitreihen-Daten, je größer die Anzahl der Perioden für jeden Datenpunkt verwendet, desto größer ist der Glättungseffekt Wegen der Glättung, Prognose nächsten Monat8217s Umsatz auf der Grundlage der Die jüngsten monatlichen Verkäufe können zu großen Abweichungen aufgrund saisonaler, zyklischer und unregelmäßiger Muster in den Daten führen. Die Glättungsfunktionen einer gleitenden Durchschnittsmethode können beim Zerlegen einer Zeitreihe für fortgeschrittene Prognosemethoden nützlich sein. Nächste Woche: Exponentielle Glättung In der nächsten Woche8217s Vorhersage Freitag. Werden wir diskutieren exponentielle Glättung Methoden, und Sie werden sehen, dass sie weit überlegen, gleitende durchschnittliche Prognose Methoden. Immer noch don8217t wissen, warum unsere Forecast Freitag Beiträge erscheinen am Donnerstag Find out at: tinyurl26cm6ma So: Post navigation Lassen Sie eine Antwort Antworten abbrechen Ich hatte 2 Fragen: 1) Können Sie die zentrierte MA Ansatz zur Prognose oder nur für die Beseitigung Saisonalität 2) Wann Verwenden Sie die einfache t (t-1t-2t-k) k MA Prognose einer Periode voraus, ist es möglich, prognostizieren mehr als 1 Periode voraus Ich denke, dann Ihre Prognose wäre einer der Punkte Fütterung in den nächsten. Vielen Dank. Liebe die Infos und Ihre Erklärungen I8217m froh, dass Sie den Blog I8217m sicher mehrere Analytiker haben die zentrierte MA-Ansatz für die Prognose verwendet haben, aber ich persönlich würde nicht, da dieser Ansatz führt zu einem Verlust von Beobachtungen an beiden Enden. Das bindet dann tatsächlich Ihre zweite Frage. Im Allgemeinen wird einfaches MA verwendet, um nur eine Periode vorher zu prognostizieren, aber viele Analytiker 8211 und ich auch manchmal 8211 verwenden meine Einperiode voraus Prognose als einer der Eingaben zur zweiten Periode voran. Es ist wichtig, sich daran zu erinnern, dass je weiter in die Zukunft Sie zu prognostizieren versuchen, desto größer ist das Risiko von Prognosefehler. Dies ist der Grund, warum ich nicht empfehlen zentrierte MA für die Vorhersage 8211 der Verlust der Beobachtungen am Ende bedeutet, dass auf Prognosen für die verlorenen Beobachtungen sowie die Periode (n) voraus zu verlassen, so gibt es größere Chance auf Prognosefehler. Leser: you8217re eingeladen, wiegen in diesem. Haben Sie irgendwelche Gedanken oder Anregungen zu diesem Brian, vielen Dank für Ihren Kommentar und Ihre Komplimente auf dem Blog Schöne Initiative und schöne Erklärung. It8217s wirklich nützlich. Ich prognostiziere benutzerdefinierte Leiterplatten für einen Kunden, der keine Prognosen gibt. Ich habe den gleitenden Durchschnitt verwendet, aber es ist nicht sehr genau, da die Industrie auf und ab gehen kann. Wir sehen in Richtung Mitte des Sommers bis zum Ende des Jahres, dass Versand pcb8217s ist. Dann sehen wir am Anfang des Jahres langsam nach unten. Wie kann ich genauer mit meinen Daten Katrina, von dem, was Sie mir gesagt haben, scheint es, dass Ihre Leiterplatten Verkauf haben eine saisonale Komponente. Ich weiß, Adresse Saisonalität in einigen der anderen Forecast Friday Posts. Ein anderer Ansatz, den Sie verwenden können, ist ziemlich einfach der Holt-Winters-Algorithmus, der die Saisonalität berücksichtigt. Hier finden Sie eine gute Erklärung. Achten Sie darauf, festzustellen, ob Ihre saisonalen Muster sind multiplikativ oder additiv, weil der Algorithmus ist etwas anders für jeden. Wenn Sie Ihre monatlichen Daten von wenigen Jahren abbilden und sehen, dass die saisonalen Schwankungen zu gleichen Zeitpunkten im Jahresverlauf konstant zu sein scheinen, dann ist die Saisonalität additiv, wenn die saisonalen Schwankungen im Laufe der Zeit zu steigen scheinen, dann ist die Saisonalität Multiplikativ. Die meisten saisonalen Zeitreihen werden multiplikativ sein. Im Zweifelsfall multiplikativ voraussetzen. Viel Glück Hi there, Zwischen diesen Methoden:. Nave Vorhersage. Aktualisieren des Mittelwerts. Gleitender Durchschnitt der Länge k. Entweder gewichtet Bewegt Durchschnitt der Länge k OR Exponentielle Glättung Welches eines jener Aktualisierung Modelle empfehlen Sie mir mit der Prognose der Daten Für meine Meinung, denke ich über Moving Average. Aber ich weiß nicht, wie es klar und strukturiert ist. Es hängt wirklich von der Quantität und Qualität der Daten und Ihrem Prognosehorizont ab (langfristig, mittelfristig oder kurzfristig). Kapitel 4 (MC und TF) Was Zwei Zahlen sind in den täglichen Bericht an den CEO von Walt Disney Parks amp Resorts in Bezug auf die sechs Orlando Parks enthalten. Gestern prognostizierte Anwesenheit und gestern Präsenz b. Gestern und heute vorausgesagte Teilnahme c. Gestern prognostizierte Anwesenheit und heute prognostizierte Anwesenheit d. Gestern und Anwesenheit der letzten Jahre e. Gestern prognostizierte Anwesenheit und die jährliche durchschnittliche tägliche Prognosefehler Eine sechstündige gleitende durchschnittliche Prognose ist besser als eine dreimonatige gleitende durchschnittliche Prognose, wenn Nachfrage a. Ist ziemlich stabil b. Hat sich aufgrund der jüngsten Werbebemühungen geändert c. Folgt einem Abwärtstrend d. Folgt einem saisonalen Muster, das sich zweimal jährlich wiederholt. Folgt einem Aufwärtstrend Bei einer gegebenen Produktnachfrage beträgt die Zeitreihen-Trendgleichung 53 - 4 X. Das negative Vorzeichen auf der Steigung der Gleichung a. Ist eine mathematische Unmöglichkeit b. Ist ein Hinweis darauf, dass die Prognose voreingenommen ist, wobei die Prognosewerte unter den tatsächlichen Werten liegen c. Ist ein Indiz dafür, dass die Produktnachfrage rückläufig ist. Dass der Bestimmungskoeffizient auch negativ ist. Impliziert, dass die RSFE negativ sein wird. Welcher der folgenden Aussagen gilt für die beiden Glättungskonstanten des Prognoseinschluss-Modells (FIT) Modell a. Eine Konstante ist positiv, die andere negativ. B. Sie werden MAD und RSFE genannt. C. Alpha ist immer kleiner als Beta. D. Eine Konstante glättet den Regressionsabschnitt, während der andere die Regressionssteigung glättet. D. h. Ihre Werte werden unabhängig bestimmt. Die Nachfrage nach einem bestimmten Produkt wird auf 800 Einheiten pro Monat geschätzt, gemittelt über alle 12 Monate des Jahres. Das Produkt folgt einem saisonalen Muster, für das der Januar-Monatsindex 1,25 beträgt. Was ist die saisonbereinigte Umsatzprognose für Januar a. 640 Einheiten b. 798,75 Einheiten c. 800 Einheiten d. 1000 Stück e. Kann nicht mit den angegebenen Informationen berechnet werden Ein Saisonindex für eine monatliche Serie wird auf der Grundlage von drei Jahren Akkumulation von Daten berechnet werden. Die drei vorhergehenden Juli Werte waren 110, 150 und 130. Der Durchschnitt über alle Monate ist 190. Der ungefähre saisonale Index für Juli ist ein. 0,487 b. 0,684 c. 1,462 d. 2,053 e. Kann nicht mit den angegebenen Informationen berechnet werden

No comments:

Post a Comment