Der Moving Average als Filter Der gleitende Durchschnitt wird oft für die Glättung von Daten in Anwesenheit von Rauschen verwendet. Der einfache gleitende Durchschnitt wird nicht immer als der Finite Impulse Response (FIR) - Filter erkannt, der es ist, während er tatsächlich einer der gebräuchlichsten Filter in der Signalverarbeitung ist. Wenn man sie als Filter betrachtet, kann man sie beispielsweise mit gefensterten Filtern vergleichen (siehe Artikel zu Tiefpaß-, Hochpass - und Bandpass - und Bandsperrfiltern für Beispiele). Der Hauptunterschied zu diesen Filtern besteht darin, daß der gleitende Durchschnitt für Signale geeignet ist, für die die Nutzinformation im Zeitbereich enthalten ist. Von denen Glättungsmessungen durch Mittelung ein Paradebeispiel sind. Window-sinc-Filter, auf der anderen Seite, sind starke Künstler im Frequenzbereich. Mit Ausgleich in der Audioverarbeitung als typisches Beispiel. Es gibt einen detaillierteren Vergleich beider Arten von Filtern in Time Domain vs. Frequency Domain Performance von Filtern. Wenn Sie Daten haben, für die sowohl die Zeit als auch die Frequenzdomäne wichtig sind, dann möchten Sie vielleicht einen Blick auf Variationen auf den Moving Average werfen. Die eine Anzahl gewichteter Versionen des gleitenden Durchschnitts zeigt, die besser sind. Der gleitende Durchschnitt der Länge (N) kann so definiert werden, wie er üblicherweise implementiert ist, wobei der aktuelle Ausgabeabtastwert der Durchschnitt der vorhergehenden (N) Abtastwerte ist. Als Filter betrachtet, führt der gleitende Durchschnitt eine Faltung der Eingangsfolge (xn) mit einem rechteckigen Puls der Länge (N) und der Höhe (1N) durch (um den Bereich des Pulses und damit die Verstärkung des Filters zu erzeugen , eins ). In der Praxis ist es am besten, (N) ungerade zu nehmen. Obwohl ein gleitender Durchschnitt auch unter Verwendung einer geraden Anzahl von Abtastwerten berechnet werden kann, hat die Verwendung eines ungeradzahligen Wertes für (N) den Vorteil, daß die Verzögerung des Filters eine ganzzahlige Anzahl von Abtastwerten ist, da die Verzögerung eines Filters mit (N) Proben genau ((N-1) 2). Der gleitende Durchschnitt kann dann exakt mit den ursprünglichen Daten ausgerichtet werden, indem er um eine ganze Zahl von Abtastwerten verschoben wird. Zeitdomäne Da der gleitende Durchschnitt eine Faltung mit einem rechteckigen Puls ist, ist sein Frequenzgang eine sinc-Funktion. Dies macht es ähnlich dem Dual des Fenstersynchronfilters, da es sich hierbei um eine Faltung mit einem Sinc-Puls handelt, der zu einem rechteckigen Frequenzgang führt. Es ist diese sinc Frequenzantwort, die den gleitenden Durchschnitt ein schlechter Darsteller im Frequenzbereich macht. Allerdings führt es sehr gut im Zeitbereich. Daher ist es perfekt, um Daten zu löschen, um Rauschen zu entfernen, während gleichzeitig eine schnelle Sprungantwort beibehalten wird (1). Für das typische Additiv-Weiß-Gauß-Rauschen (AWGN), das oft angenommen wird, bewirkt die Mittelung (N) - Proben, dass das SNR um einen Faktor (sqrt N) erhöht wird. Da das Rauschen für die einzelnen Proben unkorreliert ist, gibt es keinen Grund, jede Probe unterschiedlich zu behandeln. Daher wird der gleitende Durchschnitt, der jeder Probe das gleiche Gewicht gibt, die maximale Menge an Rauschen für eine gegebene Sprungantwortschärfe beseitigen. Implementierung Da es sich um ein FIR-Filter handelt, kann der gleitende Durchschnitt durch Faltung implementiert werden. Es hat dann die gleiche Effizienz (oder das Fehlen davon) wie jedes andere FIR-Filter. Sie kann aber auch rekursiv und effizient umgesetzt werden. Es folgt unmittelbar aus der Definition, daß diese Formel das Ergebnis der Ausdrücke für (yn) und (yn1) ist, dh, daß die Veränderung zwischen (yn1) und (yn) ein zusätzlicher Term (xn1N) ist Das Ende, während der Term (xn-N1N) von Anfang entfernt wird. In praktischen Anwendungen ist es oft möglich, die Division durch (N) für jeden Term auszulassen, indem die resultierende Verstärkung von (N) an einer anderen Stelle kompensiert wird. Diese rekursive Umsetzung wird viel schneller als Faltung. Jeder neue Wert von (y) kann mit nur zwei Additionen anstelle der (N) Additionen berechnet werden, die für eine einfache Implementierung der Definition erforderlich wären. Eine Sache, mit der Sie nach einer rekursiven Implementierung Ausschau halten, ist, dass Rundungsfehler akkumulieren. Dies kann ein Problem für Ihre Anwendung sein oder auch nicht, aber es bedeutet auch, dass diese rekursive Implementierung tatsächlich mit einer Integer-Implementierung besser funktionieren wird als mit Gleitkommazahlen. Dies ist sehr ungewöhnlich, da eine Gleitkomma-Implementierung gewöhnlich einfacher ist. Der Schluss davon muss sein, dass Sie die Nützlichkeit des einfachen gleitenden Durchschnittsfilters in Signalverarbeitungsanwendungen nie unterschätzen sollten. Filter Design Tool Dieser Artikel wird mit einem Filter Design Tool ergänzt. Experimentiere mit verschiedenen Werten für (N) und visualisiere die resultierenden Filter. Versuchen Sie es jetztMit MATLAB, wie finde ich die 3-Tage gleitenden Durchschnitt einer bestimmten Spalte einer Matrix und hängen Sie den gleitenden Durchschnitt zu dieser Matrix Ich versuche, die 3-Tage gleitenden Durchschnitt von unten nach oben der Matrix zu berechnen. Ich habe meinen Code: Angesichts der folgenden Matrix a und Maske: Ich habe versucht Umsetzung der conv Befehl, aber ich erhalte einen Fehler. Hier ist der Befehl conv, den ich versucht habe, auf der 2. Spalte der Matrix a zu verwenden: Die Ausgabe, die ich wünsche, wird in der folgenden Matrix gegeben: Wenn Sie irgendwelche Vorschläge haben, würde ich es sehr schätzen. Vielen Dank für die Spalte 2 der Matrix ein, ich bin die Berechnung der 3-Tage gleitenden Durchschnitt wie folgt und das Ergebnis in Spalte 4 der Matrix eine Platzierung (I umbenannt Matrix ein als 39desiredOutput39 nur zur Illustration). Die 3-Tage-Durchschnitt von 17, 14, 11 ist 14 die 3-Tage-Durchschnitt von 14, 11, 8 11 die 3-Tage-Durchschnitt von 11, 8, 5 8 und die 3-Tage-Durchschnitt von 8, 5, 2 ist 5. Es gibt keinen Wert in den unteren 2 Zeilen für die 4. Spalte, da die Berechnung für den dreitägigen gleitenden Durchschnitt am unteren Ende beginnt. Die 39valid39 Ausgabe wird nicht angezeigt, bis mindestens 17, 14 und 11. Hoffentlich macht dies Sinn ndash Aaron 12 Juni 13 am 1:28 Im Allgemeinen würde es helfen, wenn Sie den Fehler anzeigen würde. In diesem Fall tun Sie zwei Dinge falsch: Zuerst muss Ihre Faltung durch drei (oder die Länge der gleitenden Durchschnitt) geteilt werden Zweitens beachten Sie die Größe von c. Sie können nicht einfach passen c in eine. Der typische Weg, um einen gleitenden Durchschnitt wäre, um die gleiche: aber das sieht nicht wie Sie wollen. Stattdessen sind Sie gezwungen, ein paar Zeilen zu verwenden: 29 September, 2013 Moving Durchschnitt durch Convolution Was ist gleitend Durchschnitt und was ist es gut für Wie ist die gleitende Mittelung durch Faltung durchgeführt Moving Average ist eine einfache Operation verwendet, um in der Regel zu unterdrücken Rauschen einer Signal: Wir setzen den Wert jedes Punktes auf den Mittelwert der Werte in seiner Umgebung. Nach einer Formel: Hier ist x die Eingabe und y das Ausgangssignal, während die Größe des Fensters w ist, die ungerade sein soll. Die obige Formel beschreibt eine symmetrische Operation: Die Proben werden von beiden Seiten des aktuellen Punktes genommen. Unten ist ein Beispiel aus dem wirklichen Leben. Der Punkt, auf dem das Fenster gelegt wird, ist tatsächlich rot. Werte außerhalb x sind Nullen: Um zu spielen und sehen die Auswirkungen der gleitenden Durchschnitt, werfen Sie einen Blick auf diese interaktive Demonstration. Wie man es durch Faltung erkennt Wie Sie vielleicht erkannt haben, ist die Berechnung des einfachen gleitenden Mittels ähnlich der Faltung: In beiden Fällen wird ein Fenster entlang des Signals geschoben und die Elemente im Fenster zusammengefasst. Also, geben Sie ihm einen Versuch, die gleiche Sache zu tun, indem Sie Faltung. Verwenden Sie die folgenden Parameter: Die gewünschte Ausgabe ist: Als erster Ansatz versuchen wir, was wir durch Faltung des x-Signals durch den folgenden k-Kernel erreichen: Der Ausgang ist genau dreimal größer als erwartet. Es ist auch ersichtlich, dass die Ausgabewerte die Zusammenfassung der drei Elemente im Fenster sind. Es ist, weil während der Faltung das Fenster entlang geschoben wird, werden alle Elemente in ihm mit einem multipliziert und dann zusammengefasst: yk 1 cdot x 1 cdot x 1 cdot x Um die gewünschten Werte von y zu erhalten. Wird die Ausgabe durch 3 geteilt: Durch eine Formel mit der Teilung: Aber wäre es nicht optimal, die Teilung während der Konvolution zu machen Hier kommt die Idee, indem wir die Gleichung umordnen: So werden wir den folgenden k Kernel verwenden: Auf diese Weise werden wir Erhalten Sie die gewünschte Ausgabe: Im Allgemeinen: wenn wir gleitenden Durchschnitt durch Faltung mit einer Fenstergröße von w machen wollen. Verwenden wir den folgenden k-Kernel: Eine einfache Funktion, die den gleitenden Durchschnitt ausführt, ist: Eine Beispielnutzung ist:
No comments:
Post a Comment